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Measurement

Sir R.A.Fisher (1890-1962),

British statistician, biologist etc,

known for F-test, ANOVA etc.

According to Fisher, all inferences from
data should be based on

1. manipulation of one or more
independent variables

2. use of controls, such as random
assignment of subjects to independent

variables

3. careful measurement of dependent

variable(s)

Experiments are characterized by the

presence of 1) and 2); 3) is typical of all

data analysis (incl.observational data).
Absence of 2) ⇒ quasi-experiment.
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Principles of experimental design
Methodologically, since R.A.Fisher (1926; 1935), treatment experiments

are supposed to allow for inference on the treatment effect, which
requires

Comparison — results across different treatments should be

comparable.

Randomization — assignment of units (subjects) to treatments
(conditions) by the experimenter should be random. This

is crucial inasmuch as we wants to be able to say

something about causal effect of treatment on measurable
characteristics of the units.

Replication — results should be replicable across samples.

Orthogonality — different interventions should be independent from

(orthogonal to) each other, e.g. changes of incentives
across groups should be independent of changes in

frames, or you should not change both conditions at the
same time (or in any other correlated way).
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Principles of experimental design II
To improve efficiency of data analysis:

Blocking (noise-reducing) — partition of units into blocks to be
subjected to various treatments.
To test the quality of new shoe sole, one may give shoes with different
soles (old or new) to different users, but people may have different
walking habits. To control for this, let the same person wear one shoe
with old (control) and another — with new (experimental) sole, put
randomly on left or right shoe each. Each person then acts as ‘block’ with
lower variability than within the population, which reduces noise from
individual variances in walking habits.

Factorization (signal-enhancing) — independently vary several

dimensions of the experiment to control effectively for the
interaction of factors - e.g., 2 × 2, 3 × 2 etc.
If we want to see whether risk attitudes differ depending on lottery scale,
as well as depending of pricing conditions (willingness to accept– WTA
vs. willingness to pay – WTP), we have to randomly split subjects to WTA
and WTP treatment, and offer each of these treatments either low- and
high-prize lottery. Controlling for one factor strengthens the effect of the
other, if any is found.
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Ways to enhance power of the design

Glazed window in Caius college,
commemorating R.A.Fisher and Latin Square

1. Randomized block design splits sample

into n blocks with similar units within it,

and assigns separate treatment to each.

2. Latin square is a repeated design which

subjects the same block to exactly one
treatment at each level of every factor

(see picture)

3. Greko-Latin square is Latin square

‘crossed’ (multiplied) by its orthogonal

(Greek) square to cover more
treatments with the same number of

observations.
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Problem

In practical applications of experiments, especially natural or field,

we (usually) want to make causal (not casual!) inferences:

� Patients receive new drug: does it help to recover more quickly?

� Subjects are given more information: does it help them to make

more efficient decisions?

� Local communities have larger representation of women: does

it result in better budgetary policy?

� People receive higher incomes: does it make them happier?

Generally, is it true that treatment T causes changes in

characteristic of interest Y applied to subjects i = 1, . . . n?
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Formalization: the Rubin model

Introduce the following notation

� units (individuals, communities, firms...) i = 1, . . . n

� treatment Ti = 1 for treated and Ti = 0 for untreated unit

� potential outcome Y 1
i ≡ Yi(Ti = 1) for treated and

Y 0
i ≡ Yi(Ti = 0) for untreated unit

� causal effect τi = Y 1
i − Y 0

i of treatment T on unit i

If treatment effect is systematic across units, we want to conclude

that treatment causes the effect.

The problem, however, is that in practice we observe each unit in

only one state: it is either treated or untreated

Yi = Y 0
i (1 − Ti) + Y 1

i Ti (1)
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Solution: randomization

To solve the problem, we have to randomly assign units to

treatment and control: (Y 1
i ,Y

0
i ) ⊥ Ti

In words, there are no grounds to believe that units assigned to

one of the group are systematically different from units assigned

to another.

Admittedly, this is a matter of judgment (!), but if met, we can

argue the Average Treatment Effect (ATE) is

ATE = Eτi = E(Y 1
i |Ti = 1)− E(Y 0

i |Ti = 0) (2)

Methods, such as factorial designs (Latin or Greek squares) do

exist to control for various factors.
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Estimation

In practice, the finite sample unbiased estimator of the treatment

effect is

ATE = τ̂ =

∑n1

i=1 YiTi

n1
−

∑n0

i=1 Yi(1 − Ti)

n0
(3)

and the variance of that estimator is

Var(τ̂) =
σ

2
Y 1

i

n1
+

σ
2
Y 0

i

n0
(4)
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Key conditions

For this trick to work, we need to ensure that potential outcome

depends solely on the unit itself, which requires

Excludability : the only relevant causal agent affecting the treated

units is receipt of the treatment, or no other variable

Z = {z, z′
, . . .} affecting Yi can cause the effect:

Y 1
i (z) = Y 1

i (z
′) and Y 0

i (z) = Y 0
i (z

′),∀z, z′
. . ..

SUTVA – Stable Unit Treatment Value Assumption, or

non-interference: treatment of one unit is not affected

by treatment status of any other unit, Yi(Ti) = Yi(T)
for any vector of treatments T and all treated units.

Meeting these conditions in practice can be problematic.
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Sampling

Participants of an experiment can be recruited in the following

way:

Convenience : Those whom you can find to participate, e.g.

students
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Sampling

Participants of an experiment can be recruited in the following

way:

Convenience : Those whom you can find to participate, e.g.

students

Snowball : Invite your friends, and ask them to invite their

friends etc. (cheap way to ‘randomize’)

Quota : Select participants according to some criteria, e.g.

no more than 20% of students

Representative : Proportion of participants representing a

particular group is the same as in general population

Population : Every member of the population in question

participates (e.g. census)
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Types of experiment

Control Incentives Sampling Realism

Lab High High (?) Convenience Low

Lab in the field Medium High (?) Case/Snowball Medium

Survey Low Low Quota/Random Medium

Field Medium/Low Medium Quota High

Natural Medium/Low Medium(?) Population High

Self-selection
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Experimental validity

Internal validity Claimed inference is valid within the target

population of subjects (e.g. convenience sample of

HSE students)
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Experimental validity

Internal validity Claimed inference is valid within the target

population of subjects (e.g. convenience sample of

HSE students)

External validity Claimed inference is valid beyond the target

population (e.g. any random sample of students)

Ecological validity Claimed inference is valid in the real

environment the experiment attempts to

model/represent.
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Project topics
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Groups

Finance Artur, Daniil, Egor

Mechanism design Aida, Dmitry Pra, Vitaliia, Igor, Marina

Matching Alla, Dmitry Pok, Daniel, Elizaveta, Georgy

Cooperation Anna Sed, Maxim, Alexey, Anna Sok

Honesty Evgeniia, Elena, Alexandra

Inequality Morality Ekaterina, Roman, Alexander, Dmitry Kis,

Xenya
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